Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(10): e1011691, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37847677

RESUMO

Even though gammaherpesvirus and parasitic infections are endemic in parts of the world, there is a lack of understanding about the outcome of coinfection. In humans, coinfections usually occur sequentially, with fluctuating order and timing in different hosts. However, experimental studies in mice generally do not address the variables of order and timing of coinfections. We sought to examine the variable of coinfection order in a system of gammaherpesvirus-helminth coinfection. Our previous work demonstrated that infection with the intestinal parasite, Heligmosomoides polygyrus, induced transient reactivation from latency of murine gammaherpesvirus-68 (MHV68). In this report, we reverse the order of coinfection, infecting with H. polygyrus first, followed by MHV68, and examined the effects of preexisting parasite infection on MHV68 acute and latent infection. We found that preexisting parasite infection increased the propensity of MHV68 to reactivate from latency. However, when we examined the mechanism for reactivation, we found that preexisting parasite infection increased the ability of MHV68 to reactivate in a vitamin A dependent manner, a distinct mechanism to what we found previously with parasite-induced reactivation after latency establishment. We determined that H. polygyrus infection increased both acute and latent MHV68 infection in a population of tissue resident macrophages, called large peritoneal macrophages. We demonstrate that this population of macrophages and vitamin A are required for increased acute and latent infection during parasite coinfection.


Assuntos
Coinfecção , Gammaherpesvirinae , Helmintos , Infecções por Herpesviridae , Infecção Latente , Doenças Parasitárias , Humanos , Animais , Camundongos , Ativação Viral , Latência Viral/fisiologia , Vitamina A , Linfócitos B , Infecções por Herpesviridae/complicações , Gammaherpesvirinae/fisiologia , Macrófagos , Camundongos Endogâmicos C57BL
2.
Nat Commun ; 13(1): 6322, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36280685

RESUMO

The ribosome is a macromolecular machine that catalyzes the sequence-defined polymerization of L-α-amino acids into polypeptides. The catalysis of peptide bond formation between amino acid substrates is based on entropy trapping, wherein the adjacency of transfer RNA (tRNA)-coupled acyl bonds in the P-site and the α-amino groups in the A-site aligns the substrates for coupling. The plasticity of this catalytic mechanism has been observed in both remnants of the evolution of the genetic code and modern efforts to reprogram the genetic code (e.g., ribosomal incorporation of non-canonical amino acids, ribosomal ester formation). However, the limits of ribosome-mediated polymerization are underexplored. Here, rather than peptide bonds, we demonstrate ribosome-mediated polymerization of pyridazinone bonds via a cyclocondensation reaction between activated γ-keto and α-hydrazino ester monomers. In addition, we demonstrate the ribosome-catalyzed synthesis of peptide-hybrid oligomers composed of multiple sequence-defined alternating pyridazinone linkages. Our results highlight the plasticity of the ribosome's ancient bond-formation mechanism, expand the range of non-canonical polymeric backbones that can be synthesized by the ribosome, and open the door to new applications in synthetic biology.


Assuntos
RNA de Transferência , Ribossomos , Ribossomos/metabolismo , RNA de Transferência/metabolismo , Código Genético , Peptídeos/química , Aminoácidos/metabolismo , Biossíntese de Proteínas
3.
Cell Chem Biol ; 29(7): 1071-1112, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35413283

RESUMO

A critical step in repurposing the cellular translation machinery for the synthesis of polymeric products is the acylation of transfer RNA (tRNA) with unnatural monomers. Toward this goal, flexizymes, ribozymes capable of aminoacylation, have emerged as a uniquely adept tool for charging tRNA with ever increasingly diverse substrates. In this review, we present a library of monomer substrates that have been tested for tRNA acylation with the flexizyme system. From this mile-high view, we provide insights for understanding the chemical factors that influence flexizyme-mediated tRNA acylation. We conclude that flexizymes are primitive esterification catalysts that display a modest binding affinity to the monomer's aromatic recognition element. Together, these robust, yet flexible, flexizyme systems provide researchers with unprecedented access for preparing unnatural acyl-tRNA and the opportunity to repurpose the translation machinery for the synthesis of novel biologically derived structures beyond native proteins and peptides.


Assuntos
RNA Catalítico , Aminoacilação de RNA de Transferência , Acilação , Catálise , Peptídeos/metabolismo , RNA Catalítico/química , RNA de Transferência/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046037

RESUMO

SAMD9 and SAMD9L (SAMD9/9L) are antiviral factors and tumor suppressors, playing a critical role in innate immune defense against poxviruses and the development of myeloid tumors. SAMD9/9L mutations with a gain-of-function (GoF) in inhibiting cell growth cause multisystem developmental disorders including many pediatric myelodysplastic syndromes. Predicted to be multidomain proteins with an architecture like that of the NOD-like receptors, SAMD9/9L molecular functions and domain structures are largely unknown. Here, we identified a SAMD9/9L effector domain that functions by binding to double-stranded nucleic acids (dsNA) and determined the crystal structure of the domain in complex with DNA. Aided with precise mutations that differentially perturb dsNA binding, we demonstrated that the antiviral and antiproliferative functions of the wild-type and GoF SAMD9/9L variants rely on dsNA binding by the effector domain. Furthermore, we showed that GoF variants inhibit global protein synthesis, reduce translation elongation, and induce proteotoxic stress response, which all require dsNA binding by the effector domain. The identification of the structure and function of a SAMD9/9L effector domain provides a therapeutic target for SAMD9/9L-associated human diseases.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Modelos Moleculares , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Supressoras de Tumor/química , Sítios de Ligação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação , Ligação Proteica , Estresse Fisiológico , Relação Estrutura-Atividade , Proteínas Supressoras de Tumor/metabolismo
5.
Cell Rep Phys Sci ; 2(4)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-34755143

RESUMO

Molecular encoding in sequence-defined polymers shows promise as a new paradigm for data storage. Here, we report what is, to our knowledge, the first use of self-immolative oligourethanes for storing and reading encoded information. As a proof of principle, we describe how a text passage from Jane Austen's Mansfield Park was encoded in sequence-defined oligourethanes and reconstructed via self-immolative sequencing. We develop Mol.E-coder, a software tool that uses a Huffman encoding scheme to convert the character table to hexadecimal. The oligourethanes are then generated by a high-throughput parallel synthesis. Sequencing of the oligourethanes by self-immolation is done concurrently in a parallel fashion, and the liquid chromatography-mass spectrometry (LC-MS) information decoded by our Mol.E-decoder software. The passage is capable of being reproduced wholly intact by a third-party, without any purifications or the use of tandem MS (MS/MS), despite multiple rounds of compression, encoding, and synthesis.

6.
Rev Esp Geriatr Gerontol ; 56(5): 279-288, 2021.
Artigo em Espanhol | MEDLINE | ID: mdl-34147282

RESUMO

OBJECTIVE: The aim of this scoping review was to analyze the resistance training-based programs' characteristics and outcomes of physical and psychological health and cognitive functions measured in older adults with sarcopenia. METHOD: This scoping review was carried out following the criteria and flow diagram established in the PRISMA guidelines and included studies from 2011 until 2020 from electronic databases, including PubMed, Scopus, and Web of Science. RESULTS: A total of 13 randomized controlled trials were included. The sample's average age was 72.2 years, with an age range between 71 and 80 years, considering a total sample of 1029 older adults (57% women). Resistance training-based programs were carried out mainly in university facilities, presented high adherence (91.2%) and were able to induce increase in strength and muscle mass. The most frequent parameters used were 2-3 weekly, 50-90-min-long sessions for 3-9 months, using between 8 and 15 repetitions, in an intense training zone with 1-RM between 60% and 85%. The most measured physical health outcomes were muscle strength, muscle mass, and BMI. Cognitive impairment was frequently evaluated, and few studies evaluated mental health. CONCLUSION: This review characterized resistance training-based programs in older people with sarcopenia, highlighting the extension, frequency, duration, and intensity of these, as well the most frequently used outcome measures and instruments. These results could be useful for prescribing future resistance training-based programs in older adults with sarcopenia.


Assuntos
Terapia por Exercício , Treinamento de Força , Sarcopenia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Força Muscular , Ensaios Clínicos Controlados Aleatórios como Assunto , Sarcopenia/terapia
7.
J Am Chem Soc ; 142(6): 2744-2749, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31986251

RESUMO

Sequence-defined polymers show promise for biomimetics, self-assembly, catalysis, and information storage, wherein the primary structure begets complex chemical processes. Here we report the solution-phase and the high-yielding solid-phase syntheses of discrete oligourethanes and methods for their self-immolative sequencing, resulting in rapid and robust characterization of this class of oligomers and polymers, without the use of MS/MS. Crucial to the sequencing is the inherent reactivity of the terminal alcohol to "unzip" the oligomers, in a controlled and iterative fashion, releasing each monomer as a 2-oxazolidinone. By monitoring the self-immolation reaction via LC/MS, an applied algorithm rapidly produces the sequence of the oligourethane. Not only does this process provide characterization of structurally complex molecules, it works as a reader of molecular information.


Assuntos
Polímeros/química , Uretana/química , Algoritmos , Cromatografia Líquida/métodos , Estrutura Molecular , Espectrometria de Massas em Tandem/métodos
8.
Nat Commun ; 10(1): 5097, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31704912

RESUMO

The site-specific incorporation of noncanonical monomers into polypeptides through genetic code reprogramming permits synthesis of bio-based products that extend beyond natural limits. To better enable such efforts, flexizymes (transfer RNA (tRNA) synthetase-like ribozymes that recognize synthetic leaving groups) have been used to expand the scope of chemical substrates for ribosome-directed polymerization. The development of design rules for flexizyme-catalyzed acylation should allow scalable and rational expansion of genetic code reprogramming. Here we report the systematic synthesis of 37 substrates based on 4 chemically diverse scaffolds (phenylalanine, benzoic acid, heteroaromatic, and aliphatic monomers) with different electronic and steric factors. Of these substrates, 32 were acylated onto tRNA and incorporated into peptides by in vitro translation. Based on the design rules derived from this expanded alphabet, we successfully predicted the acylation of 6 additional monomers that could uniquely be incorporated into peptides and direct N-terminal incorporation of an aldehyde group for orthogonal bioconjugation reactions.


Assuntos
Código Genético , Engenharia Metabólica/métodos , Biossíntese de Proteínas , RNA Catalítico/metabolismo , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Aminoacil-tRNA Sintetases , Ácido Benzoico/metabolismo , Fenilalanina/metabolismo , Polimerização , Biologia Sintética , Aminoacilação de RNA de Transferência
9.
Animals (Basel) ; 8(11)2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30352962

RESUMO

Arapaima gigas is a large air-breathing fish found in Amazonian rivers, a characteristic that gives this species an advantage in oxygen-deprived waters. It shows high potential for aquaculture in the Amazon region due to its fast growth rate that approaches 10⁻15 kg/year. The aim of this study was to explore the composition of the intestinal bacterial community of Arapaima gigas reared in Ecuador using 16S rRNA gene high-throughput sequencing. The analysis revealed significant differences in alpha diversity indices (p < 0.05) and differential distribution of minor components of the intestinal microbiome between small and large fish. However, components with greater relative abundance, such as Cetobacterium, are found in similar proportions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...